Página inicialGruposDiscussãoMaisZeitgeist
Pesquise No Site
Este site usa cookies para fornecer nossos serviços, melhorar o desempenho, para análises e (se não estiver conectado) para publicidade. Ao usar o LibraryThing, você reconhece que leu e entendeu nossos Termos de Serviço e Política de Privacidade . Seu uso do site e dos serviços está sujeito a essas políticas e termos.

Resultados do Google Livros

Clique em uma foto para ir ao Google Livros

Carregando...

Weighing the Odds: A Course in Probability and Statistics

de David Williams

MembrosResenhasPopularidadeAvaliação médiaConversas
28Nenhum(a)837,590 (4)Nenhum(a)
Statistics do not lie, nor is probability paradoxical. You just have to have the right intuition. In this lively look at both subjects, David Williams convinces mathematics students of the intrinsic interest of statistics and probability, and statistics students that the language of mathematics can bring real insight and clarity to their subject. He helps students build the intuition needed, in a presentation enriched with examples drawn from all manner of applications, e.g., genetics, filtering, the Black-Scholes option-pricing formula, quantum probability and computing, and classical and modern statistical models. Statistics chapters present both the Frequentist and Bayesian approaches, emphasising Confidence Intervals rather than Hypothesis Test, and include Gibbs-sampling techniques for the practical implementation of Bayesian methods. A central chapter gives the theory of Linear Regression and ANOVA, and explains how MCMC methods allow greater flexibility in modelling. C or WinBUGS code is provided for computational examples and simulations. Many exercises are included; hints or solutions are often provided.… (mais)
Nenhum(a)
Carregando...

Registre-se no LibraryThing tpara descobrir se gostará deste livro.

Ainda não há conversas na Discussão sobre este livro.

Sem resenhas
sem resenhas | adicionar uma resenha
Você deve entrar para editar os dados de Conhecimento Comum.
Para mais ajuda veja a página de ajuda do Conhecimento Compartilhado.
Título canônico
Título original
Títulos alternativos
Data da publicação original
Pessoas/Personagens
Lugares importantes
Eventos importantes
Filmes relacionados
Epígrafe
Dedicatória
Primeiras palavras
Citações
Últimas palavras
Aviso de desambiguação
Editores da Publicação
Autores Resenhistas (normalmente na contracapa do livro)
Idioma original
CDD/MDS canônico
LCC Canônico
Statistics do not lie, nor is probability paradoxical. You just have to have the right intuition. In this lively look at both subjects, David Williams convinces mathematics students of the intrinsic interest of statistics and probability, and statistics students that the language of mathematics can bring real insight and clarity to their subject. He helps students build the intuition needed, in a presentation enriched with examples drawn from all manner of applications, e.g., genetics, filtering, the Black-Scholes option-pricing formula, quantum probability and computing, and classical and modern statistical models. Statistics chapters present both the Frequentist and Bayesian approaches, emphasising Confidence Intervals rather than Hypothesis Test, and include Gibbs-sampling techniques for the practical implementation of Bayesian methods. A central chapter gives the theory of Linear Regression and ANOVA, and explains how MCMC methods allow greater flexibility in modelling. C or WinBUGS code is provided for computational examples and simulations. Many exercises are included; hints or solutions are often provided.

Não foram encontradas descrições de bibliotecas.

Descrição do livro
Resumo em haiku

Current Discussions

Nenhum(a)

Capas populares

Links rápidos

Avaliação

Média: (4)
0.5
1
1.5
2
2.5
3 1
3.5
4 2
4.5
5 1

É você?

Torne-se um autor do LibraryThing.

 

Sobre | Contato | LibraryThing.com | Privacidade/Termos | Ajuda/Perguntas Frequentes | Blog | Loja | APIs | TinyCat | Bibliotecas Históricas | Os primeiros revisores | Conhecimento Comum | 204,588,071 livros! | Barra superior: Sempre visível