Página inicialGruposDiscussãoMaisZeitgeist
Este site usa cookies para fornecer nossos serviços, melhorar o desempenho, para análises e (se não estiver conectado) para publicidade. Ao usar o LibraryThing, você reconhece que leu e entendeu nossos Termos de Serviço e Política de Privacidade . Seu uso do site e dos serviços está sujeito a essas políticas e termos.
Hide this

Resultados do Google Livros

Clique em uma foto para ir ao Google Livros

Machine Learning Paradigms : Artificial…
Carregando...

Machine Learning Paradigms : Artificial Immune Systems and their… (edição: 2016)

de Dionysios Sotiropoulos (Autor)

MembrosResenhasPopularidadeAvaliação médiaConversas
5Nenhum(a)2,382,161Nenhum(a)Nenhum(a)
The topic of this monograph falls within the, so-called, biologically motivated computing paradigm, in which biology provides the source of models and inspiration towards the development of computational intelligence and machine learning systems. Specifically, artificial immune systems are presented as a valid metaphor towards the creation of abstract and high level representations of biological components or functions that lay the foundations for an alternative machine learning paradigm. Therefore, focus is given on addressing the primary problems of Pattern Recognition by developing Artificial Immune System-based machine learning algorithms for the problems  of Clustering, Classification and One-Class Classification. Pattern Classification, in particular, is studied within the context of the Class Imbalance Problem. The main source of inspiration stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems that is exceptionally evolved in order to continuously address an extremely unbalanced pattern classification problem, namely, the self / non-self discrimination process.  The experimental results presented in this monograph involve a wide range of degenerate binary classification problems where the minority class of interest is to be recognized against the vast volume of the majority class of negative patterns. In this context, Artificial Immune Systems are utilized for the development of personalized software as the core mechanism behind the implementation of Recommender Systems. The book will be useful to researchers, practitioners and graduate students dealing with Pattern Recognition and Machine Learning and their applications in Personalized Software and Recommender Systems. It is intended for both the expert/researcher in these fields, as well as for the general reader in the field of Computational Intelligence and, more generally, Computer Science who wishes to learn more about the field of Intelligent Computing Systems and its applications. An extensive list of bibliographic references at the end of each chapter guides the reader to probe further into application area of interest to him/her.… (mais)
Membro:flint63
Título:Machine Learning Paradigms : Artificial Immune Systems and their Applications in Software Personalization
Autores:Dionysios Sotiropoulos (Autor)
Informação:Springer (2016), Ausgabe: 1st ed. 2017, 327 Seiten (Intelligent Systems Reference Library)
Coleções:Sua biblioteca
Avaliação:
Etiquetas:Artificial Intelligence, Machine Learning, _monograph, _ebook, _online, _see also

Detalhes da Obra

Machine Learning Paradigms : Artificial Immune Systems and their Applications in Software Personalization de Dionisios N. Sotiropoulos

Adicionado recentemente porgarywgaryw, flint63

Nenhum(a).

Nenhum(a)
Carregando...

Registre-se no LibraryThing tpara descobrir se gostará deste livro.

Ainda não há conversas na Discussão sobre este livro.

Sem resenhas
sem resenhas | adicionar uma resenha
Você deve entrar para editar os dados de Conhecimento Comum.
Para mais ajuda veja a página de ajuda do Conhecimento Compartilhado.
Título canônico
Título original
Títulos alternativos
Data da publicação original
Pessoas/Personagens
Lugares importantes
Eventos importantes
Filmes relacionados
Premiações
Epígrafe
Dedicatória
Primeiras palavras
Citações
Últimas palavras
Aviso de desambiguação
Editores da Publicação
Autores Resenhistas (normalmente na contracapa do livro)
Idioma original
CDD/MDS canônico

Referências a esta obra em recursos externos.

Wikipédia em inglês

Nenhum(a)

The topic of this monograph falls within the, so-called, biologically motivated computing paradigm, in which biology provides the source of models and inspiration towards the development of computational intelligence and machine learning systems. Specifically, artificial immune systems are presented as a valid metaphor towards the creation of abstract and high level representations of biological components or functions that lay the foundations for an alternative machine learning paradigm. Therefore, focus is given on addressing the primary problems of Pattern Recognition by developing Artificial Immune System-based machine learning algorithms for the problems  of Clustering, Classification and One-Class Classification. Pattern Classification, in particular, is studied within the context of the Class Imbalance Problem. The main source of inspiration stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems that is exceptionally evolved in order to continuously address an extremely unbalanced pattern classification problem, namely, the self / non-self discrimination process.  The experimental results presented in this monograph involve a wide range of degenerate binary classification problems where the minority class of interest is to be recognized against the vast volume of the majority class of negative patterns. In this context, Artificial Immune Systems are utilized for the development of personalized software as the core mechanism behind the implementation of Recommender Systems. The book will be useful to researchers, practitioners and graduate students dealing with Pattern Recognition and Machine Learning and their applications in Personalized Software and Recommender Systems. It is intended for both the expert/researcher in these fields, as well as for the general reader in the field of Computational Intelligence and, more generally, Computer Science who wishes to learn more about the field of Intelligent Computing Systems and its applications. An extensive list of bibliographic references at the end of each chapter guides the reader to probe further into application area of interest to him/her.

Não foram encontradas descrições de bibliotecas.

Descrição do livro
Resumo em haiku

Links rápidos

Capas populares

Avaliação

Média: Sem avaliação.

É você?

Torne-se um autor do LibraryThing.

 

Sobre | Contato | LibraryThing.com | Privacidade/Termos | Ajuda/Perguntas Frequentes | Blog | Loja | APIs | TinyCat | Bibliotecas Históricas | Os primeiros revisores | Conhecimento Comum | 155,681,482 livros! | Barra superior: Sempre visível