Página inicialGruposDiscussãoMaisZeitgeist
Pesquise No Site
Este site usa cookies para fornecer nossos serviços, melhorar o desempenho, para análises e (se não estiver conectado) para publicidade. Ao usar o LibraryThing, você reconhece que leu e entendeu nossos Termos de Serviço e Política de Privacidade . Seu uso do site e dos serviços está sujeito a essas políticas e termos.

Resultados do Google Livros

Clique em uma foto para ir ao Google Livros

Carregando...

An Introduction to Genetic Algorithms

de Melanie Mitchell

MembrosResenhasPopularidadeAvaliação médiaConversas
272Nenhum(a)97,490 (3.8)Nenhum(a)
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics--particularly in machine learning, scientific modeling, and artificial life--and reviews a broad span of research, including the work of Mitchell and her colleagues.The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines.An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.… (mais)
Nenhum(a)
Carregando...

Registre-se no LibraryThing tpara descobrir se gostará deste livro.

Ainda não há conversas na Discussão sobre este livro.

Sem resenhas
sem resenhas | adicionar uma resenha
Você deve entrar para editar os dados de Conhecimento Comum.
Para mais ajuda veja a página de ajuda do Conhecimento Compartilhado.
Título canônico
Informação do Conhecimento Comum em inglês. Edite para a localizar na sua língua.
Título original
Títulos alternativos
Data da publicação original
Pessoas/Personagens
Lugares importantes
Eventos importantes
Filmes relacionados
Epígrafe
Dedicatória
Primeiras palavras
Citações
Últimas palavras
Aviso de desambiguação
Editores da Publicação
Autores Resenhistas (normalmente na contracapa do livro)
Idioma original
CDD/MDS canônico
LCC Canônico

Referências a esta obra em recursos externos.

Wikipédia em inglês (1)

Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics--particularly in machine learning, scientific modeling, and artificial life--and reviews a broad span of research, including the work of Mitchell and her colleagues.The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines.An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.

Não foram encontradas descrições de bibliotecas.

Descrição do livro
Resumo em haiku

Current Discussions

Nenhum(a)

Capas populares

Links rápidos

Gêneros

Classificação decimal de Dewey (CDD)

006Information Computing and Information Special Topics

Classificação da Biblioteca do Congresso dos E.U.A. (LCC)

Avaliação

Média: (3.8)
0.5
1
1.5
2
2.5
3 5
3.5 4
4 14
4.5
5 2

É você?

Torne-se um autor do LibraryThing.

 

Sobre | Contato | LibraryThing.com | Privacidade/Termos | Ajuda/Perguntas Frequentes | Blog | Loja | APIs | TinyCat | Bibliotecas Históricas | Os primeiros revisores | Conhecimento Comum | 204,715,312 livros! | Barra superior: Sempre visível